A novel intranasal virus-like particle (VLP) vaccine designed to protect against the pandemic 1918 influenza A virus (H1N1).
نویسندگان
چکیده
We have prepared a virus-like particle (VLP) vaccine bearing the surface glycoproteins HA and NA of the 1918 influenza A virus by infecting Sf9 cells with a quadruple recombinant baculovirus that expresses the four influenza proteins (HA, NA, M1, and M2) required for the assembly and budding of the VLPs. The presence of HA and M1 in the purified VLPs was confirmed by Western blot, and that of NA by a neuraminidase enzymatic assay. For in vivo studies, the 1918 VLP vaccine was formulated with or without an oligonucleotide containing two CpG motifs and administered in two doses 2 wk apart via the intranasal route. The antibody titers in mice immunized with VLP vaccines were higher than in mice vaccinated with an inactivated swine virus (H1N1) control, when CHO cells expressing 1918 HA were used as antigen. The opposite result was obtained when disrupted swine virus was the antigen for the ELISA test. Vaccine efficacy was evaluated by challenging immunized mice with the 1918 antigenically related influenza virus A/swine/Iowa/15/30 (H1N1) and measuring viral titers in the upper and lower respiratory tract. Mice immunized with VLP vaccine plus CpG demonstrated significantly lower viral titers in the nose and lungs than did the control on days 2 and 4 postchallenge and completely cleared the virus by day 6. Furthermore, they did not show symptoms of disease although there was a minor decrease in body weight. Mice vaccinated with VLP alone also demonstrated significantly lower viral titers in the nose and lungs than did the placebo group as well as the inactivated virus group on days 4 and 6 postchallenge. These results suggest that it is feasible to make a safe and immunogenic vaccine to protect against the extremely virulent 1918 virus, using a novel and safe cell-based technology.
منابع مشابه
Protection against Multiple Subtypes of Influenza Viruses by Virus-Like Particle Vaccines Based on a Hemagglutinin Conserved Epitope
We selected the conserved sequence in the stalk region of influenza virus hemagglutinin (HA) trimmer, the long alpha helix (LAH), as the vaccine candidate sequence, and inserted it into the major immunodominant region (MIR) of hepatitis B virus core protein (HBc), and, by using the E. coli expression system, we prepared a recombinant protein vaccine LAH-HBc in the form of virus-like particles (...
متن کاملAn Intranasal Virus-Like Particle Vaccine Broadly Protects Mice from Multiple Subtypes of Influenza A Virus
UNLABELLED Influenza virus infections are a global public health problem, with a significant impact of morbidity and mortality from both annual epidemics and pandemics. The current strategy for preventing annual influenza is to develop a new vaccine each year against specific circulating virus strains. Because these vaccines are unlikely to protect against an antigenically divergent strain or a...
متن کاملVirus-Like Particle Vaccine Protects against 2009 H1N1 Pandemic Influenza Virus in Mice
BACKGROUND The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines. METHODOLOGY/PRINCIPAL FINDINGS We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VL...
متن کاملVirus-like particle (VLP)-based vaccines for pandemic influenza
The influenza pandemic of 2009 demonstrated the inability of the established global capacity for egg-based vaccine production technology to provide sufficient vaccine for the population in a timely fashion. Several alternative technologies for developing influenza vaccines have been proposed, among which non-replicating virus-like particles (VLPs) represent an attractive option because of their...
متن کاملLong-Lasting Cross-Protection Against Influenza A by Neuraminidase and M2e-based immunization strategies
There is mounting evidence that in the absence of neutralizing antibodies cross-reactive T cells provide protection against pandemic influenza viruses. Here, we compared protection and CD8+ T cell responses following challenge with H1N1 2009 pandemic and H3N2 viruses of mice that had been immunized with hemagglutinin (HA), neuraminidase (NA) and the extracellular domain of matrix protein 2 (M2e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Viral immunology
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2007